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Abstract

An analytical model based upon electric field saturation concept along the crack front is proposed in an attempt to

predict the fracture of piezoelectric materials containing conducting cracks. Firstly, linear piezoelectroelasticity solution

is obtained to show the singularity of the electric field near the crack tips. Then an electrically yielding strip near the

crack front is proposed. Expressions for the stress intensity factor K and the energy release rate G are obtained in

closed-form. Fracture criteria based on the non-linear fracture mechanics parameters K and G are established, which
are shown to be equivalent for some special situations. Theoretically predicated fracture loads agree qualitatively with

existing experimental observations.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectric effect occurs in a number of ceramics. The direct piezoelectric effect relates a change in the

polarization to an applied stress, whereas the converse effect relates a dimensional change to an applied

electric field. Piezoelectric ceramic materials are very brittle and have low strength. Hence, reliability studies

have to be performed. In particular, it is necessary to understand the influence of electric fields on the

fracture strength of piezoelectric materials. Experiments have shown that crack growth under electrical or

electromechanical loads is responsible for failure of many electroceramic systems. Some years ago, Suo

et al. (1992) expanded the fracture mechanical concept to piezoelectric materials. Among various fracture

modes, dielectric breakdown associated with the growth of conducting cracks has received considerable
attention (Suo, 1993; Winzer et al., 1989; Zeller and Schneider, 1984). Recently, several important issues

regarding the effect of electric fields on crack growth in piezoelectric materials have been reported in the
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literature. Insulating and conducting cracks are two main assumptions, which have been widely used to

study the fracture behavior of piezoelectric ceramics. Analysis based on a linear piezoelectric model predicts

that an electric field does not produce any stress intensity factor and positive driving force for an insulating

crack. However, experimental observations suggested that crack growth can be enhanced or retarded by
electric field (Park and Sun, 1995; Heyer et al., 1998; Zhang et al., 2003). In order to explain experimental

observations, a simplified model of perfect electrical displacement saturation has been applied to insulating

cracks in piezoelectric materials (Fulton and Gao, 1997; Gao et al., 1997; Ru, 1999; Wang, 2000). In such

an electrical displacement saturation model, the region near the crack front is assumed to yield electrically

to reach an electric displacement saturation limit. Besides the electric displacement saturation model, the

ferroelectric/ferroelastic process zone models can also describe the observed experiment phenomena quite

well (Yang and Zhu, 1998; Ricoeur and Kuna, 2003).

On the other hand, when the applied electric field in a solid dielectric increases up to an upper limit, the
dielectric will be electrically breakdown (Kuffel and Zaengl, 1984). Electrical breakdown is a common

phenomenon in solid dielectrics under high electric field. The breakdown strength Ec is a property of the
material and temperature. The values required for an intrinsic breakdown are well in excess of 106 V/cm for

an idea dielectric without any defects. The electrical breakdown in general is accomplished through the

formulation of discharge channels. In fact, a tree-like pattern discharge near the tip of an electrode (where

the electric field singularity exists) has been observed (Cooper, 1963). The tree-like pattern discharge was

also observed in dielectric failure where non-uniform electric field predominate (Kuffel and Zaengl, 1984).

Based on the above facts, we proposed an electrical field saturation model in this paper. That is, we
consider an electrical field saturation strip around the crack tip. The model is analogous to the ‘‘electrical

displacement saturation model’’ and is referred to as ‘‘electrical field saturation model’’ in this paper. We

only consider the interior crack problem, which provides a useful analog to the more important surface/

edge crack problem. Closed-form solution for this model has been obtained and some calculations results

for the fracture predictions are given.
2. Basic piezoelectric elasticity equations

We investigate the plane problem of the infinite piezoelectric medium shown in Fig. 1. Assume that all

field variables are functions of x1 and x2 only. The coordinates x and y coincide with x1 and x2 respectively.
Constitutive equations for piezoelectric materials polarized along the x1-direction subjected to mechanical
and electrical fields can be written as
r22
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Fig. 1. A piezoelectric medium with a through-thickness conducting crack.
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where rij and Di are stresses and electric displacements, respectively; cij, eij, and 2ii are elastic constants,

piezoelectric constants, and dielectric permittivities, respectively. The strain, eij is related to the mechanical
displacement, ui, as eij ¼ ðui;j þ uj;iÞ=2, where a comma indicates a partial derivative. The electric field, Ei is

related to the electric potential, /, as Ei ¼ �/;i.
In order to facilitate the analysis procedure, the constitutive equation (1) is re-written as
r22
r11
r12
E2
E1

8>>>><
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>>>>:

9>>>>=
>>>>;
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Since the electric displacement D is divergence-free in the absence of space charge, a potential function

Uðx; yÞ exists, giving

D1 ¼ U;2; D2 ¼ �U;1: ð3Þ
It follows from Ei ¼ /;i that
E1;2 � E2;1 ¼ 0: ð4Þ
The governing equations can be written in terms of displacements u1 and u2 and the potential function U by
inserting Eq. (2) into Eq. (4) and the mechanical equilibrium conditions rji;j ¼ 0, giving:
�c33u1;11 þ �c44u1;22 þ ð�c13 þ �c44Þu2;12 þ ð�e33 � �e15ÞU;12 ¼ 0
ð�c13 þ �c44Þu1;12 þ �c44u2;11 þ �c11u2;22 � �e15U;11 þ �e31U;22 ¼ 0
ð�e33 � �e15Þu1;12 þ �e31u2;22 � �e15u2;11 þ 233U;22 þ 211U;11 ¼ 0

9=
;: ð5Þ
3. The linear piezoelectric crack problem

Fig. 1 shows a piezoelectric medium with a crack of length 2a along the x1-axis. Let the piezoelectric
medium be loaded by a remote uniform shear stress s1, a normal stress r1 in the x2-direction and an
electric field E1 in the x1-direction. The crack is electrically conducting and free of mechanical forces.
Therefore, the crack surface conditions can be stated as follows
r21 ¼ 0; r22 ¼ 0; E1ðx; 0Þ ¼ 0; jxj < a: ð6Þ
In the following analysis, we will use the following notations
fbg ¼ fb1; b2; b3gT ¼ fr12; r22;E1gT; ð7aÞ

fb1g ¼ fb11 ; b12 ; b13 g
T ¼ fs1; r1;E1gT; ð7bÞ

fUg ¼ fU1;U2;U3gT ¼ fu1; u2;UgT; ð7cÞ
The solution technique employed in the following is not new. There are enormous references related to

this technique. The displacements and the potential function U will be derived from Fourier integrals and
characteristic equations. The boundary conditions on the crack surfaces are satisfied by some auxiliary

functions. A system of singular integral equations is finally derived and the crack tip field is then obtained.
Analog to the solution of crack problems for orthotropic elasticity (e.g., Konda and Erdogan, 1994), the

solution of Eq. (5) can be expressed as:
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UJ ðx1; x2Þ ¼
1

2p

Z 1

�1
expðjsjkmx2ÞAJm expð�isx1ÞFm dsþ fJ ðx1; x2Þ; ð8Þ
where fJ (J ¼ 1, 2, 3) are particular solutions determined from the far-field boundary conditions; the first
term on the right-hand side of Eq. (8) is the general solution of Eq. (5) which should vanish at infinity; FmðsÞ
are unknown functions; km are eigenvalues, (A1m;A2m;A3m) are corresponding eigenvectors of the following
characteristic equations
�c33 � �c44k
2
m isgn ðsÞð�c13 þ �c44Þkm isgn ðsÞð�e33 � �e15Þkm

isgn ðsÞð�c13 þ �c44Þkm �c44 � �c11k
2
m ��e15 � �e31k

2
m

isgn ðsÞð�e33 � �e15Þkm ��e15 � �e31k
2
m 211 � 233k2m

2
64

3
75 A1m

A2m
A3m

8<
:

9=
; ¼ 0: ð9Þ
Since the stress and electric fields given by the infinite integral on the right-hand side of Eq. (8) must vanish
as x2 approaches infinity, only those eigenvalues of Eq. (9) involve negative real parts for x2 > 0 and po-
sitive real parts for x2 < 0 should be considered.
The stress and electrical fields can be obtained by differentiating Eq. (8) to obtain the strain and electric

displacement fields, and substituting the strain and electrical displacement fields into the electroelastic

constitutive equations (2). This gives:
bJ ¼
1

2p

Z 1

�1
s expðjsjkmx2ÞCJm expð�isx1ÞFm dsþ b1J ; ð10Þ
where CJmðsÞ, (J ¼ 1, 2, 3), are some coefficients which depend only on material properties.
To satisfy boundary conditions (6) on crack surfaces, we again analog to the solution of crack problems

for orthotropic elasticity (e.g., Konda and Erdogan, 1994). That is we introduce an auxiliary vector
fgðxÞg ¼ fg1ðxÞ; g2ðxÞ; g3ðxÞgT along the crack plane
gJ ¼
oUJ ðx1;þ0Þ

ox1
� oUJ ðx1;�0Þ

ox1
: ð11Þ
From the continuity conditions on the x2 ¼ 0 plane, it can be shown that fgðxÞg vanishes for jx1j > a.
Substituting of Eq. (8) into Eq. (11) leads to the expressions for Fm, in terms of the Fourier transform of

fgðxÞg. Those expressions are substituting into Eq. (10) to obtain the stress and electric fields fbðx1; x2Þg, in
terms of fgðxÞg. On the x2 ¼ 0 plane, we have:
fbðx; 0Þg ¼ ½K�
p

Z a

�a

1

r � x
fgðrÞgdr þ fb1g; ð12Þ
in which ½K� is a (3 · 3) matrix which depends only on material properties. It follows from Eq. (12) and

boundary conditions (6) that
½K�
p

Z a

�a

1

r � x
fgðrÞgdr ¼ �fb1g; jxj < a: ð13Þ
Eq. (13) can be directly inverted to yield
fgðxÞg ¼ �½K�1�fb1g xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ; jxj < a; ð14Þ
where ½K�1� is the inversion of matrix ½K�.
Since the crack is electrically conducting, the electrical potential on its surfaces is a constant. However,

the charges will accumulate on the crack surfaces. According to Eq. (11), the crack sliding displacements

Du1 and opening displacement Du2 across the crack, and the accumulated charge Dq on the crack surfaces,
can be obtained by integrating Eq. (14), giving
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fDu1ðxÞ;Du2ðxÞ;DqðxÞgT ¼ ½K�1�fb1g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; jxj < a; ð15Þ
where DuiðxÞ, (i ¼ 1, 2) are displacement differences between the upper and lower surfaces of the crack,
DqðxÞ is the sum of the accumulated charges on the upper and lower surfaces of the crack. DqðxÞ has a unit
of charge per unit length.

In order to derive the stress and electric fields near the crack tips, we use Eq. (14) to derive the

expression:
½K�
p

Z a

�a

1

r � x
fgðrÞgdr ¼ fb1gRe jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p

�
� 1

�
: ð16Þ
Substituting it into Eq. (12), we obtain
fbg ¼ fb1gRe jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
� �

: ð17Þ
Eq. (17) shows that ahead of the crack tips, the stress and electric fields are singular. From Eq. (17) together

with the definition of the stress and electric field intensity factors:
KII ¼ lim
x!aþ0

r21ðx; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
; KI ¼ lim

x!aþ0
r22ðx; 0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
;

KE ¼ lim
x!aþ0

E1ðx; 0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
; ð18Þ
we obtain
KI ¼ r1
ffiffiffiffiffiffi
pa

p
; KII ¼ s1

ffiffiffiffiffiffi
pa

p
; KE ¼ E1

ffiffiffiffiffiffi
pa

p
: ð19Þ
where KI and KII are, respectively, modes I and II stress intensity factors, KE is the electric field intensity
factor. They are defined in Eq. (18).

The energy release rate can be obtained from the virtual crack closure integral:
G ¼ 1
2
lim
d!0

Z d

0

½r2jðxþ aÞDujðxþ a� dÞ þ E1ðxþ aÞDqðxþ a� dÞ�dx; j ¼ 1; 2: ð20Þ
Here and in the sequel the summation over the indices i, j, I and J is assumed (i; j ¼ 1; 2; I ; J ¼ 1; 2; 3).
Substituting of Eqs. (15) and (17) into Eq. (20) leads to
G ¼ pa
4
b1I K�1

IJ b
1
J ; I ; J ¼ 1; 2; 3; ð21Þ
or
G ¼ 1
4
fKII;KI;KEg½K�1�fKII;KI;KEgT: ð22Þ
In Eq. (21) and in the following, K�1
IJ (I ; J ¼ 1; 2; 3) are the elements in matrix ½K�1�. For stable materials,

the matrix ½K� should be positive defined. Therefore, G is a positive defined function of the applied stress
and electric fields. Hence, G increases as the strength of the applied electric field increases either in positive
or in negative directions. This fact suggests that if linear fracture mechanics parameter G is used as a
fracture criterion, the existence of an electric field may enhance crack propagation regardless of its

direction.
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4. An electrical field saturation model

Consider again a piezoelectric medium with a crack of length 2a along the x-axis. Let the medium be

loaded by remote uniform normal stresses s1 and r1 in the x2-direction and a uniform electric field E1 in
the x1-axis. Electrically, the crack is considered as a conductor. For such a crack configuration, the above
linear piezoelectric analysis shows that the electric fields at the crack tips is singular. It is expected that the

electric field near the crack tips is high enough to reach a limit value so that the medium near the crack tip

region is electrically yielding.

Analogous to the electrical displacement saturation model proposed by Fulton and Gao (1997) and Gao

et al. (1997), the above problem can be highly simplified to a conducting crack with an electric field sat-

uration strip a < jxj < c ahead of the crack tips, as shown in Fig. 2 (Zhang and Gao, 2004). The saturation
region can be modeled as an applied constant electrical field E1ðx1Þ ¼ Ec which is defined as a fraction of the
electrical breakdown strength of the medium. This condition is equivalent to the singular integral equa-

tions:
KiJ

p

Z c

�c

1

r � x
gJ ðrÞdr ¼ �b1i ; jxj < a; ð23aÞ

K3J

p

Z c

�c

1

r � x
gJ ðrÞdr ¼ pðxÞ � b13 ; jxj < c: ð23bÞ
where i ¼ 1, 2 and J ¼ 1, 2, 3. The electric field saturation function pðxÞ is defined as
pðxÞ ¼ 0 if jxj < a
Ec if c > jxj > a:

�
ð24Þ
4.1. Stress intensity factor

Mechanically, the crack is closed at jxj ¼ a. Therefore, the auxiliary functions g1 and g2 vanish for
jxjP a. Eqs. (23) can be directly solved to give
giðxÞ ¼ �K�1
iJ b

1
J

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p ; jxj < a; i ¼ 1; 2: ð25Þ
In order to derive the stress and electric fields ahead of the crack tips, we use Eqs. (25) and (23b) to derive

the expressions:
Z a

�a

1

r � x
giðrÞdr ¼ pK�1

iJ b
1
J Re

jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
�

� 1
�
; i ¼ 1; 2: ð26aÞ

Z c

�c

1

r � x
g3ðrÞdr ¼

p
K33

½pðxÞ � b13 � �
K3i

K33

Z c

�c

1

r � x
giðrÞdr; jxj < c: ð26bÞ
x

y

E1=E∞
-a a c-c

Electrically nonlinear regionσ12=τ∞, σ22=σ∞

Fig. 2. Electric field saturation model.
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Substituting these into the definition Eq. (12), we obtain
r2iðx; 0Þ ¼ b1i

�
� Ki3

K33

b13

�
Re

jxjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � a2

p
� �

þ Ki3

K33

pðxÞ; i ¼ 1; 2; ð27aÞ

E1ðx; 0Þ ¼ pðxÞ; ð27bÞ

Eq. (27a) shows that the electric field alone can cause stresses in the cracked plane ahead of the crack tips.
This character is quite different from the result of the linear piezoelectric elasticity (see Eq. (17)). Further,

ahead of the crack tips, the electric field is finite but the stresses have singularities. From Eq. (27a) together

with the definition of the stress intensity factors we obtain
KII ¼ b11

�
� K13

K33

b13

� ffiffiffiffiffiffi
pa

p
; KI ¼ b12

�
� K23

K33

b13

� ffiffiffiffiffiffi
pa

p
: ð28Þ
Again, it is found that the electrical field load b13 can cause stress singularities at the crack tips.

4.2. Energy release rate

In order to obtain the energy release from virtual crack closure integral we need to know the dis-

placement jumps across the crack and the electric charge accumulated on the crack surfaces. It can be
shown from Eq. (25) that the crack sliding and opening displacements are same as in the linear case,
DuiðxÞ ¼ K�1
iJ b

1
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; jxj < a; i ¼ 1; 2: ð29Þ
Referring to Eq. (23b), to ensure that the electric field E1 is non-singular at the endpoints jxj ¼ c, the
following equation must hold (Estrada and Kanwal, 2000)
Z c

�c

pðxÞ � b13ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p dx ¼ 0: ð30Þ
Eq. (30) gives the size of the saturation region as a function of the ratio of the applied electric field to the

electric field saturation limit Ec:
a
c
¼ cos p

2

E1

Ec

� �
: ð31Þ
Then, the non-singular solution of (23b) is (Fulton and Gao, 1997; Gao et al., 1997; Estrada and Kanwal,

2000)
K3igiðxÞ þ K33g3ðxÞ ¼ � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p Z c

�c

pðtÞ � b13
ðx� tÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2

p dt ¼ �Ec
p
½xðx; aÞ � xð�x; aÞ�; ð32Þ
or
g3ðxÞ ¼ � 1
p

Ec
K33

½xðx; aÞ � xð�x; aÞ� � K3i

K33

giðxÞ; jxj < c; ð33Þ
where
xðx; aÞ ¼ cosh�1 c2 � a2

cða � xÞ

���� þ a
c

����; ð34Þ
in which cosh�1 represents inverse hyperbolic cosine function.
The accumulated charges exist both in the cracked region (jxj < a) and in the electrical saturation zone.

Integration of Eq. (33) gives:
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DqðxÞ ¼ � 1
p

Ec
K33

½ða� xÞxðx; aÞ þ ðaþ xÞxð�x; aÞ�; jxj < c: ð35Þ
Once again, the energy release rate G is obtained from the virtual crack closure integral shown in Eq.

(20), giving:
G ¼ pa
4

b1I K�1
IJ b

1
J

�
� 1

K33

ðb13 Þ
2

�
; I ; J ¼ 1; 2; 3: ð36Þ
Substituting b11 ¼ K1
II =

ffiffiffi
a

p
, b12 ¼ K1

I =
ffiffiffi
a

p
and b13 ¼ K1

E =
ffiffiffi
a

p
into Eq. (36), G can be written in terms of the

applied stress and electric field intensity factors.

4.3. Equivalence of the stress intensity factor and the energy release rate

In the problem under consideration, the poling direction of the medium coincides with the crack line

(that is, along the x-axis). It can be shown from the following numerical examples that the material
characteristic matrix ½K� has the following form:
½K� ¼
K11 0 0

0 K22 K23

0 K23 K33

2
4

3
5: ð37Þ
It follows from Eqs. (28), (36) and (37) that:
KII ¼ b11
ffiffiffiffiffiffi
pa

p
; KI ¼ b12

�
� K23

K33

b13

� ffiffiffiffiffiffi
pa

p
: ð38Þ

G ¼ pa
4

K�1
22 b12

�"
� K23

K33

b13

�2
þ K�1

11 ðb11 Þ
2

#
¼ 1
4
ðK�1

22 K
2
I þ K�1

11 K
2
IIÞ: ð39Þ
A particular case is that if the applied shear stress is zero (i.e., KII ¼ 0), Eq. (39) becomes:
G ¼ pa
4

K�1
22 b12

�
� K23

K33

b13

�2
¼ 1
4

K�1
22 K

2
I : ð40Þ
It can be shown from Eqs. (38b) and (40) that, for the electric field based non-linear crack model, fracture

criteria based on the stress intensity factor and the energy release rate are equivalent. Therefore, either of K
and G can be used as a criterion for conducting cracks in piezoelectric materials.
5. Applications

In order to demonstrate the applicability of the electric field saturation model for the piezoelectricity

fracture problem, we evaluate the expressions obtained for two particular materials, namely PZT-4 and

PZT-PIC 151. The properties are given in Tables 1–3 (Fulton and Gao, 1997; Heyer et al., 1998). The

experimental results for PZT-PIC 151 material are also available (Heyer et al., 1998).

After solving the problem for the poling direction parallel to the x-axis, we obtain the matrices:
½K� ¼
2:164 0 0

0 2:838 0:05338
0 0:05338 0:005375

2
4

3
5� 1010 for PZT-4; and



Table 1

Elastic constants (1010 N/m2)

Materials c11 c12 c13 c44 c33

PZT-4 13.9 7.78 7.43 2.56 11.3

PZT-PIC 151 11 6.3 6.4 2 10

Table 2

Piezoelectric constants (C/m2)

Materials e31 e33 e15

PZT-4 )6.980 13.84 13.44

PZT-PIC 151 )9.6 15.1 12

Table 3

Dielectric permittivities (10�10 C/Vm)

Materials 211 233
PZT-4 60.0 54.7

PZT-PIC 151 98.24 75.4
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½K� ¼
1:743 0 0

0 2:274 0:04047
0 0:04047 0:003830

2
4

3
5� 1010 for PZT-PIC 151
Here the plane-strain condition is considered. For a crack along the x1-axis, with loads r1 perpendicular to

and E1 parallel to the crack line, the stress intensity factor KI and the energy release rate G are obtained as
follows:

PZT-4:
KI ¼ r1
ffiffiffiffiffiffi
pa

p
; G ¼ að0:3403r21 � 6:758E1r1 þ 179:7E21Þ � 10�10
for linear piezoelectric crack, and
KI ¼ ðr1 � 9:931E1Þ
ffiffiffiffiffiffi
pa

p
; G ¼ að0:3403r21 � 6:758E1r1 þ 33:55E21Þ � 10�10
for electrically non-linear crack.

PZT-PIC 151:
KI ¼ r1
ffiffiffiffiffiffi
pa

p
; G ¼ að0:4254r21 � 8:990E1r1 þ 252:6E21Þ � 10�10
for linear piezoelectric crack, and
KI ¼ ðr1 � 10:57E1Þ
ffiffiffiffiffiffi
pa

p
; G ¼ að0:4254r21 � 8:990E1r1 þ 47:50E21Þ � 10�10
for electrically non-linear crack.

The typical value of the fracture toughness of piezoelectric ceramics in the absence of electric field is

around KIC ¼ 1 Mpa
ffiffiffiffi
m

p
. Suppose a crack with half-length of a ¼ 1 mm, the predicted fracture loads for

PZT-PIC 151 are shown in Fig. 3. For comparison, predictions based on linear stress intensity factor and
energy release rate are also given. As shown in Eq. (40), there is no difference between the stress intensity
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Fig. 3. Variations of fracture loads with applied electric field strengths (Half crack length is a ¼ 1 mm).
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factor and the energy release rate criteria, if the electrical non-linearity is taken into consideration.

Accordingly, there is only one cave for non-linear prediction, which increases linearly with the applied

electric field load. Conversely, predictions based on linear crack model are different for K criterion and G
criterion. The electric field has no effect on the fracture load if linear K criterion is used. Further, for linear
G criterion, the predicted fracture loads increase with applied electric field, to a peak value, and then de-
crease.

Fig. 4 shows the relationship between the critical applied stress and electric field intensity factors, based

on the electrically non-linear model. The assumed fracture toughness in the absence of electric field is

KIC ¼ 1 Mpa
ffiffiffiffi
m

p
. It can be shown that the critical applied stress intensity factor is an increasing function of

the critical electric field intensity factor. Hence, a positive electric field will improve and a negative electric

field will decrease the fracture toughness of the piezoelectric media. The nonlinear prediction in Fig. 4 for

PZT-PIC 151 material agree qualitatively with existing experimental observations made by Heyer et al.
(1998). Such a fact suggests that the electric field non-linearity model proposed in this paper is reasonable

for piezoelectric materials with conducting cracks. For comparison, Fig. 4 also plots the prediction based

on the linear G criterion.
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6. Conclusion

An electric field based non-linear model for a conducting crack in piezoelectric materials is proposed.

The model is analogously similar to the strip dielectric breakdown model proposed by Zhang and Gao
(2004). The model requires only some basic material properties, such as the elastic constants, piezoelectric

constants and dielectric permittivities. Expressions for stress intensity factor and energy release rate are

obtained in closed-form and they do not depend on the electric field saturation strength of the media. It is

found that crack propagation can either be enhanced or be retarded depending on the direction of the

electric field. Theoretically predicated fracture loads based on the proposed model agree qualitatively with

existing experimental observations.
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