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Abstract

An analytical model based upon electric field saturation concept along the crack front is proposed in an attempt to
predict the fracture of piezoelectric materials containing conducting cracks. Firstly, linear piezoelectroelasticity solution
is obtained to show the singularity of the electric field near the crack tips. Then an electrically yielding strip near the
crack front is proposed. Expressions for the stress intensity factor K and the energy release rate G are obtained in
closed-form. Fracture criteria based on the non-linear fracture mechanics parameters K and G are established, which
are shown to be equivalent for some special situations. Theoretically predicated fracture loads agree qualitatively with
existing experimental observations.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Piezoelectric effect occurs in a number of ceramics. The direct piezoelectric effect relates a change in the
polarization to an applied stress, whereas the converse effect relates a dimensional change to an applied
electric field. Piezoelectric ceramic materials are very brittle and have low strength. Hence, reliability studies
have to be performed. In particular, it is necessary to understand the influence of electric fields on the
fracture strength of piezoelectric materials. Experiments have shown that crack growth under electrical or
electromechanical loads is responsible for failure of many electroceramic systems. Some years ago, Suo
et al. (1992) expanded the fracture mechanical concept to piezoelectric materials. Among various fracture
modes, dielectric breakdown associated with the growth of conducting cracks has received considerable
attention (Suo, 1993; Winzer et al., 1989; Zeller and Schneider, 1984). Recently, several important issues
regarding the effect of electric fields on crack growth in piezoelectric materials have been reported in the
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literature. Insulating and conducting cracks are two main assumptions, which have been widely used to
study the fracture behavior of piezoelectric ceramics. Analysis based on a linear piezoelectric model predicts
that an electric field does not produce any stress intensity factor and positive driving force for an insulating
crack. However, experimental observations suggested that crack growth can be enhanced or retarded by
electric field (Park and Sun, 1995; Heyer et al., 1998; Zhang et al., 2003). In order to explain experimental
observations, a simplified model of perfect electrical displacement saturation has been applied to insulating
cracks in piezoelectric materials (Fulton and Gao, 1997; Gao et al., 1997; Ru, 1999; Wang, 2000). In such
an electrical displacement saturation model, the region near the crack front is assumed to yield electrically
to reach an electric displacement saturation limit. Besides the electric displacement saturation model, the
ferroelectric/ferroelastic process zone models can also describe the observed experiment phenomena quite
well (Yang and Zhu, 1998; Ricoeur and Kuna, 2003).

On the other hand, when the applied electric field in a solid dielectric increases up to an upper limit, the
dielectric will be electrically breakdown (Kuffel and Zaengl, 1984). Electrical breakdown is a common
phenomenon in solid dielectrics under high electric field. The breakdown strength E. is a property of the
material and temperature. The values required for an intrinsic breakdown are well in excess of 10° V/cm for
an idea dielectric without any defects. The electrical breakdown in general is accomplished through the
formulation of discharge channels. In fact, a tree-like pattern discharge near the tip of an electrode (where
the electric field singularity exists) has been observed (Cooper, 1963). The tree-like pattern discharge was
also observed in dielectric failure where non-uniform electric field predominate (Kuffel and Zaengl, 1984).

Based on the above facts, we proposed an electrical field saturation model in this paper. That is, we
consider an electrical field saturation strip around the crack tip. The model is analogous to the “electrical
displacement saturation model’”” and is referred to as “‘electrical field saturation model” in this paper. We
only consider the interior crack problem, which provides a useful analog to the more important surface/
edge crack problem. Closed-form solution for this model has been obtained and some calculations results
for the fracture predictions are given.

2. Basic piezoelectric elasticity equations

We investigate the plane problem of the infinite piezoelectric medium shown in Fig. 1. Assume that all
field variables are functions of x; and x, only. The coordinates x and y coincide with x; and x, respectively.
Constitutive equations for piezoelectric materials polarized along the x;-direction subjected to mechanical
and electrical fields can be written as
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Fig. 1. A piezoelectric medium with a through-thickness conducting crack.
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where ¢;; and D; are stresses and electric displacements, respectively; c;;, e;;, and €;; are elastic constants,
piezoelectric constants, and dielectric permittivities, respectively. The strain, ¢; is related to the mechanical
displacement, u;, as ¢; = (u;; + u;;)/2, where a comma indicates a partial derivative. The electric field, E; is
related to the electric potential, ¢, as E; = —¢ .

In order to facilitate the analysis procedure, the constitutive equation (1) is re-written as

0n cn ¢z 0 0 e &n
o1 c3 ¢z 0 0 ey el
() = () 0 6‘44 é15 O 2812 . (2)
E, ey e 0 0 €y D,

Since the electric displacement D is divergence-free in the absence of space charge, a potential function
&(x,y) exists, giving

D =&, D,=-9,. (3)
It follows from E; = ¢ that
Eir—Ey; =0. (4)

The governing equations can be written in terms of displacements u; and u, and the potential function ¢ by
inserting Eq. (2) into Eq. (4) and the mechanical equilibrium conditions ¢;;; = 0, giving:

CasUy 11 + Caat1 0 + (C13 + Cas)tn 12 + (€33 — €15) P12 = 0
(€13 4 Caa)tt1 12 + Cagtiz 11 + Critan — €15P 11 + e3P =0 . (5)
(€33 — @15)u1 12 + €31tz — eisua 1 + €3P o + €11 P =0

3. The linear piezoelectric crack problem

Fig. 1 shows a piezoelectric medium with a crack of length 2a along the x;-axis. Let the piezoelectric
medium be loaded by a remote uniform shear stress 7., a normal stress ¢, in the x,-direction and an
electric field E,, in the x;-direction. The crack is electrically conducting and free of mechanical forces.
Therefore, the crack surface conditions can be stated as follows

001 =0, on=0, E(x0) =0, |x| < a. (6)
In the following analysis, we will use the following notations

{b} = {b1,bs,b3}" = {012, 0, E1}', (7a)

{67} = {67, b5, 5} = {1, 00, E} (7b)

{U} = {U1, U, Us}' = {uy,up, @}, (7¢)

The solution technique employed in the following is not new. There are enormous references related to
this technique. The displacements and the potential function @ will be derived from Fourier integrals and
characteristic equations. The boundary conditions on the crack surfaces are satisfied by some auxiliary
functions. A system of singular integral equations is finally derived and the crack tip field is then obtained.

Analog to the solution of crack problems for orthotropic elasticity (e.g., Konda and Erdogan, 1994), the
solution of Eq. (5) can be expressed as:
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1 o .
Uy(i,2) = 5- / eXp(I5|Anta) A exp(—isx1 Vs + £ (x1, x2), (8)

where f; (J = 1, 2, 3) are particular solutions determined from the far-field boundary conditions; the first
term on the right-hand side of Eq. (8) is the general solution of Eq. (5) which should vanish at infinity; F,,(s)
are unknown functions; /,, are eigenvalues, (41,42, 43,) are corresponding eigenvectors of the following
characteristic equations

C33 — 6’44)3” ngIl (S) (513 + E44))Lm ngIl (S) (é33 — éw))nm Alm
ngH (S) (513 + 644))% Cqq — Z‘]l)»i —ey5 — é31;\,2 Azm =0. (9)
isgn (s)(e33 — eis) Am —e15 — ey, €1 — €, Asm

Since the stress and electric fields given by the infinite integral on the right-hand side of Eq. (8) must vanish
as x, approaches infinity, only those eigenvalues of Eq. (9) involve negative real parts for x, > 0 and po-
sitive real parts for x, < 0 should be considered.

The stress and electrical fields can be obtained by differentiating Eq. (8) to obtain the strain and electric
displacement fields, and substituting the strain and electrical displacement fields into the electroelastic
constitutive equations (2). This gives:

by = % / 5 exp([sl/nks) Co exp(—isir ) s + B, (10)
where Cj,(s), (J/ =1, 2, 3), are some coefficients which depend only on material properties.

To satisfy boundary conditions (6) on crack surfaces, we again analog to the solution of crack problems
for orthotropic elasticity (e.g., Konda and Erdogan, 1994). That is we introduce an auxiliary vector
{g()} = {g1(x). £2(x), &:(x)} " along the crack planc

_ aUJ(x17+O) aUJ('xh_O)
&= x| x| ' (11)

From the continuity conditions on the x, = 0 plane, it can be shown that {g(x)} vanishes for |x;| > a.
Substituting of Eq. (8) into Eq. (11) leads to the expressions for F,,, in terms of the Fourier transform of
{g(x)}. Those expressions are substituting into Eq. (10) to obtain the stress and electric fields {s(x;,x>)}, in
terms of {g(x)}. On the x, = 0 plane, we have:
4] [« 1 x
{b(x,0)} =— [ ——{e(n)}dr+{p>}, (12)
T o r—x
in which [4] is a (3x3) matrix which depends only on material properties. It follows from Eq. (12) and
boundary conditions (6) that

A tempar=—) w<a (13)

V4 al

Eq. (13) can be directly inverted to yield

{g(0)} = —[47]{p> | <a, (14)

X
N
where [47'] is the inversion of matrix [A].

Since the crack is electrically conducting, the electrical potential on its surfaces is a constant. However,
the charges will accumulate on the crack surfaces. According to Eq. (11), the crack sliding displacements
Au, and opening displacement Au, across the crack, and the accumulated charge Ag on the crack surfaces,
can be obtained by integrating Eq. (14), giving
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{Aui(x), Aus(x), Ag(x)} = [Ap*Wa? =22, x| <, (15)

where Au;(x), (i =1, 2) are displacement differences between the upper and lower surfaces of the crack,
Aq(x) is the sum of the accumulated charges on the upper and lower surfaces of the crack. Ag(x) has a unit
of charge per unit length.

In order to derive the stress and electric fields near the crack tips, we use Eq. (14) to derive the
expression:

Al 41
[—n]/a:{g(r)}dr:{bm}Re(\/%_az—l). (16)
Substituting it into Eq. (12), we obtain
{b} {b"“}Re(zmz)‘ (17)
X2 —a

Eq. (17) shows that ahead of the crack tips, the stress and electric fields are singular. From Eq. (17) together
with the definition of the stress and electric field intensity factors:

Ky = limo 021(x,0)y/2n(x —a), K= limO on(x,0)y/2n(x — a),
X—a+ X—a+
Kg = limOEl(x,O)\/Zn(x—a), (18)

x—a+

we obtain

Ki =0, Vma, Kin=1t\Vma, Kg=E \/ra. (19)

where K7 and Kj; are, respectively, modes I and II stress intensity factors, Kg is the electric field intensity
factor. They are defined in Eq. (18).
The energy release rate can be obtained from the virtual crack closure integral:

1 1)
Gzzgin(l) [02j(x + a)Au;(x +a — ) + E\(x + a)Aq(x +a — 9)]dx, j=1,2. (20)
-0 Jo
Here and in the sequel the summation over the indices i, j, [ and J is assumed (i,j = 1,2; I,J = 1,2,3).
Substituting of Egs. (15) and (17) into Eq. (20) leads to

na

“=3

ALY, 1,0 =1,2,3, (21)
or
1
G= Z{KH,KI,KE}[A‘I]{KH,KI,KE}T. (22)

In Eq. (21) and in the following, A,}l (I,J = 1,2,3) are the elements in matrix [4~']. For stable materials,
the matrix [A4] should be positive defined. Therefore, G is a positive defined function of the applied stress
and electric fields. Hence, G increases as the strength of the applied electric field increases either in positive
or in negative directions. This fact suggests that if linear fracture mechanics parameter G is used as a
fracture criterion, the existence of an electric field may enhance crack propagation regardless of its
direction.
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4. An electrical field saturation model

Consider again a piezoelectric medium with a crack of length 2a along the x-axis. Let the medium be
loaded by remote uniform normal stresses 7., and o, in the x,-direction and a uniform electric field £, in
the x;-axis. Electrically, the crack is considered as a conductor. For such a crack configuration, the above
linear piezoelectric analysis shows that the electric fields at the crack tips is singular. It is expected that the
electric field near the crack tips is high enough to reach a limit value so that the medium near the crack tip
region is electrically yielding.

Analogous to the electrical displacement saturation model proposed by Fulton and Gao (1997) and Gao
et al. (1997), the above problem can be highly simplified to a conducting crack with an electric field sat-
uration strip a < |x| < ¢ ahead of the crack tips, as shown in Fig. 2 (Zhang and Gao, 2004). The saturation
region can be modeled as an applied constant electrical field £, (x;) = E. which is defined as a fraction of the
electrical breakdown strength of the medium. This condition is equivalent to the singular integral equa-
tions:

A; c 1 -

T | roRs)dr=br, i <a (23a)
Ay €1 .

T ) & =p) b Rl < (23b)

where i = 1, 2 and J = 1, 2, 3. The electric field saturation function p(x) is defined as

0 if x| <a
p(x)—{Ec if ¢> |x| > a. (24)

4.1. Stress intensity factor

Mechanically, the crack is closed at |x| = a. Therefore, the auxiliary functions g; and g, vanish for
|x| = a. Egs. (23) can be directly solved to give
x
Vi — 2’
In order to derive the stress and electric fields ahead of the crack tips, we use Egs. (25) and (23b) to derive
the expressions:

gi(x) = —A;'b x| <a, i=1,2. (25)

‘ 1 _ —1p00 |x| .

/ar_xgi(r)dr—nAubjRe< x2—a2_1)7 i=1,2. (26a)
¢ 1 4 . A3l~ ¢ 1

[U p _xg3(l”) dr = . (x) = b — ym [c " _xgi(r) dr, |x| <ec. (26b)

_ _ Electrically nonlinear region
G12=Too, 022=Oco

-C -a ac

Fig. 2. Electric field saturation model.
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Substituting these into the definition Eq. (12), we obtain

_ | 1 A |x]| A -
02i(x,0) = (bi L, )Re(\/f—tﬁ) +A—33P(x)a i=12, (27a)

Ei(x,0) = p(x), (27b)

Eq. (27a) shows that the electric field alone can cause stresses in the cracked plane ahead of the crack tips.
This character is quite different from the result of the linear piezoelectric elasticity (see Eq. (17)). Further,
ahead of the crack tips, the electric field is finite but the stresses have singularities. From Eq. (27a) together

with the definition of the stress intensity factors we obtain
A A
Ky = <be - ib;ﬂ) Vra, K= <b;@ - ﬁb;”) Vra. (28)
Az ° Az °

Again, it is found that the electrical field load 53° can cause stress singularities at the crack tips.
4.2. Energy release rate

In order to obtain the energy release from virtual crack closure integral we need to know the dis-
placement jumps across the crack and the electric charge accumulated on the crack surfaces. It can be
shown from Eq. (25) that the crack sliding and opening displacements are same as in the linear case,

Aui(x) = A b¥Va2 —x2, x| <a, i=1,2. (29)

Referring to Eq. (23b), to ensure that the electric field E; is non-singular at the endpoints |x| = ¢, the
following equation must hold (Estrada and Kanwal, 2000)

“plx) — b
—~——= dx=0. 30
—c \/CZ—X2 ( )

Eq. (30) gives the size of the saturation region as a function of the ratio of the applied electric field to the
electric field saturation limit E.:

a nE
c_ T ) 31
t=eos (35 o
Then, the non-singular solution of (23b) is (Fulton and Gao, 1997; Gao et al., 1997; Estrada and Kanwal,
2000)

1 ¢ t) — by E,
A3igi(x) + Ags(x) = —=Ve? — x2/ p()—; dt = ——[w(x,a) — o(—x,a)], (32)
n — (x=t)Ve?—x2 n
or
g0 = — 3 1lola) - o(xa) - e, K <c (33)
where

2.2
cc—u o (34)

cla—x) ¢

o(x,o) = cosh™'

in which cosh™ represents inverse hyperbolic cosine function.
The accumulated charges exist both in the cracked region (|x| < a) and in the electrical saturation zone.
Integration of Eq. (33) gives:
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1 E.
Ag(x) = ———[(a —x)o(x,a) + (a + x)o(—x,a)], |x] <ec. (35)
4 /133
Once again, the energy release rate G is obtained from the virtual crack closure integral shown in Eq.

(20), giving:

1

G:% bR A b —A—B(bf)2 C LJ=1.203. (36)
Substituting b = K7 /v/a, b5 = K{°/+/a and by = K /+/a into Eq. (36), G can be written in terms of the
applied stress and electric field intensity factors.

4.3. Equivalence of the stress intensity factor and the energy release rate
In the problem under consideration, the poling direction of the medium coincides with the crack line

(that is, along the x-axis). It can be shown from the following numerical examples that the material
characteristic matrix [A] has the following form:

Ay 0 0
[Al=1 0 Ay Axn|. (37)
0 Axn Ay
It follows from Egs. (28), (36) and (37) that:
A
KII = b?o\/ a, KI = (bgc — A—Bbgc) \VTta. (38)
33
a /123 2 1
— 00 00 - 00\2 — _
G= 4 l/lzzl <b2 - /1_33b3 ) + Alll(bl ) 1 = Z(A221K12 + A111K121)~ (39)
A particular case is that if the applied shear stress is zero (i.e., Kj; = 0), Eq. (39) becomes:
na i, Aun. R
G=" Ay <b2 /1:1;3) = K (40)

It can be shown from Egs. (38b) and (40) that, for the electric field based non-linear crack model, fracture
criteria based on the stress intensity factor and the energy release rate are equivalent. Therefore, either of K
and G can be used as a criterion for conducting cracks in piezoelectric materials.

5. Applications

In order to demonstrate the applicability of the electric field saturation model for the piezoelectricity
fracture problem, we evaluate the expressions obtained for two particular materials, namely PZT-4 and
PZT-PIC 151. The properties are given in Tables 1-3 (Fulton and Gao, 1997; Heyer et al., 1998). The
experimental results for PZT-PIC 151 material are also available (Heyer et al., 1998).

After solving the problem for the poling direction parallel to the x-axis, we obtain the matrices:

2164 0 0
M =] 0 2838 005338 | x10" for PZT-4,and
0  0.05338 0.005375
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Table 1
Elastic constants (10'° N/m?)
Materials e cn c13 Ca4 €33
PZT-4 13.9 7.78 7.43 2.56 11.3
PZT-PIC 151 11 6.3 6.4 2 10
Table 2
Piezoelectric constants (C/m?)
Materials €31 €33 eis
PZT-4 —6.980 13.84 13.44
PZT-PIC 151 -9.6 15.1 12
Table 3
Dielectric permittivities (107° C/V m)
Materials €n €33
PZT-4 60.0 54.7
PZT-PIC 151 98.24 75.4
1.743 0 0
[M]=1] 0 2274 0.04047 | x 10" for PZT-PIC 151

0 0.04047 0.003830

Here the plane-strain condition is considered. For a crack along the x;-axis, with loads o, perpendicular to
and E, parallel to the crack line, the stress intensity factor Kj and the energy release rate G are obtained as
follows:
PZT-4:
Ki = ov/ma, G =a(0.34036, — 6.758FE..0 + 179.7E%) x 107'°
for linear piezoelectric crack, and
Ki = (00 —9.931E,)v/ra, G =a(0.34036, — 6.758E,0., + 33.55E%) x 107"

for electrically non-linear crack.

PZT-PIC 151:
Ki = o vma, G=a(0.4254¢% —8.990E, 0, + 252.6E2) x 1071
for linear piezoelectric crack, and
Ky = (65 — 10.57E,)V/ma, G = a(0.425406>, — 8.990E,,0,, + 47.50E%) x 107"
for electrically non-linear crack.
The typical value of the fracture toughness of piezoelectric ceramics in the absence of electric field is
around Kjc = 1 Mpa y/m. Suppose a crack with half-length of @ = 1 mm, the predicted fracture loads for

PZT-PIC 151 are shown in Fig. 3. For comparison, predictions based on linear stress intensity factor and
energy release rate are also given. As shown in Eq. (40), there is no difference between the stress intensity
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28 ¢
Nonlinear Prediction

24 b

20 b Linear K Prediction
16

12
Linear G Prediction

Critical Stress (Mpa)

8 6 4 -2 0 2 4 6 8
Applied electrical field strength (KV/cm)

Fig. 3. Variations of fracture loads with applied electric field strengths (Half crack length is @ = 1 mm).

factor and the energy release rate criteria, if the electrical non-linearity is taken into consideration.
Accordingly, there is only one cave for non-linear prediction, which increases linearly with the applied
electric field load. Conversely, predictions based on linear crack model are different for K criterion and G
criterion. The electric field has no effect on the fracture load if linear K criterion is used. Further, for linear
G criterion, the predicted fracture loads increase with applied electric field, to a peak value, and then de-
crease.

Fig. 4 shows the relationship between the critical applied stress and electric field intensity factors, based
on the electrically non-linear model. The assumed fracture toughness in the absence of electric field is
Kic = 1 Mpa /m. It can be shown that the critical applied stress intensity factor is an increasing function of
the critical electric field intensity factor. Hence, a positive electric field will improve and a negative electric
field will decrease the fracture toughness of the piezoelectric media. The nonlinear prediction in Fig. 4 for
PZT-PIC 151 material agree qualitatively with existing experimental observations made by Heyer et al.
(1998). Such a fact suggests that the electric field non-linearity model proposed in this paper is reasonable
for piezoelectric materials with conducting cracks. For comparison, Fig. 4 also plots the prediction based
on the linear G criterion.

16F
14¢F
1.2
1.0
0.8
0.6
0.4
0.2

0'0 1 1 1 1 ]
-40 -20 0 20 40 60

Ke [(KV/m)(m)¥7]

Nonlinear Prediction

K, [Mpa(m)*?]

Linear G Prediction

Fig. 4. Critical applied stress and electric field intensity factors for PZT-PIC 151 (K; = 6+ +/7a, Kg = E.\/7a).
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6. Conclusion

An electric field based non-linear model for a conducting crack in piezoelectric materials is proposed.
The model is analogously similar to the strip dielectric breakdown model proposed by Zhang and Gao
(2004). The model requires only some basic material properties, such as the elastic constants, piezoelectric
constants and dielectric permittivities. Expressions for stress intensity factor and energy release rate are
obtained in closed-form and they do not depend on the electric field saturation strength of the media. It is
found that crack propagation can either be enhanced or be retarded depending on the direction of the
electric field. Theoretically predicated fracture loads based on the proposed model agree qualitatively with
existing experimental observations.
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